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Chathoth and coworkers (Phys. Rev. Lett. 101, 037801 (2008)) have reported
examples of multicomponent glass-forming metallic liquids in which the packing
fraction appears to be a dominant parameter. Here, we first summarise, for 15
pure liquid metals, properties of the Ornstein–Zernike direct correlation function
c(r) which provide a necessary, though not sufficient, condition for hard-sphere-
like (HS) liquid behaviour. Returning to multicomponent melts, NiNb and
NiNbSn systems have been studied by Chathoth and coworkers. Pure Ni,
according to c(r) data near melting, satisfies the necessary condition for HS
behaviour, while Sn certainly does not. But the Sn concentration is low in the
metallic glass-forming liquid NiNbSn investigated by Chathoth and coworkers.
Suitable experimental diffraction data to obtain c(r) in pure liquid Nb seems not
to be available presently. Finally, a brief discussion is given of atomic transport in
supercooled multicomponent metallic liquids, the status of the Stokes–Einstein
relation being one focus.

Keywords: metallic glasses; liquid alloys; packing fraction; hard spheres; shear
viscosity; atomic transport

I. Introduction

The present study of multicomponent glass-forming metallic liquids has been motivated by
the very recent work of Chathoth et al. [1]. Ni59.5Nb40.5 and Ni60Nb34.8Sn5.2 melts in
particular were focused on in their investigation of atomic dynamics and a lot of attention
was given to the packing fraction as the dominant parameter. In fact, these two alloys
exhibit extraordinarily high packing fractions, higher than in any other alloy melts.
Atomic hard-sphere (HS) diameters are usually employed in the definition of the packing
fraction. This has led us to consider the importance in multicomponent glass-forming
metallic liquids of HS-like behaviour in relation to long-range attractive components of
the interatomic forces involved.

A natural starting point then seemed to be to examining force-field properties of pure
liquid metals. Therefore, we first took the earlier data [2] in which compressibility
measurements were combined with experimental diffraction data on the liquid structure
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factor [3] S(q) for 15 liquid metals, the results being collected in Section 2. With the

exception of Ga, Sn and Pb, the metals studied satisfy in a fair way the usual criteria for

HS behaviour. Sections 3 and 4 then consider the pure metals, and in particular liquid Ni,

in relation to the multicomponent metallic systems investigated by Chathoth et al. [1].

Appeal is also given to the theoretical study of Hausleitner and Hafner [4], where

interatomic forces were derived for a particular NiNb metallic liquid. Then in Section 5 a

brief discussion of dynamics is given, some attention being first focused on the relation [5]

between shear viscosity � and configurational entropy SE. The latter quantity, in turn, is

related to the static structure of the glass-forming metallic liquids under consideration.

Some discussion is also given to the status of the Stokes–Einstein relation (SER) [3] in

liquid metallic alloys. Section 6 constitutes the summary, together with some proposals for

future directions which should prove fruitful.

2. Nature of interatomic forces and the supercooling of monatomic liquid metals

An important step forward in the theoretical understanding of some properties of dense

monatomic liquids like insulating Ar or metallic Na was taken when one of the prominent

approximate theories of liquid structure, going back to Percus and Yevick (PY) [6], was

solved analytically [7,8]. Bernasconi and March [2] focused attention on the experimentally

accessible Ornstein–Zernike direct correlation function c(r) [3]. This, in turn, is connected

via its Fourier transform (FT) c(q) with the liquid structure factor S(q) by:

cðqÞ ¼
SðqÞ � 1

SðqÞ
: ð1Þ

S(q) is, in essence, the FT of the pair correlation function g(r) of the monatomic liquid

under consideration, and can be obtained by diffraction experiments, especially using

X-rays.
In early work, Johnson and March [9] and Johnson et al. [10] pointed out that an

intimate asymptotic connection exists between c(r) at large r and an (assumed) central pair

potential, �(r), namely

cðrÞ ! �
�ðrÞ

kBT
, ð2Þ

for r!1, where kBT denotes the thermal energy. Returning now to the PY solution for

HS, Bhatia and March [11] demonstrated that for the HS model, the direct correlation

function, denoted by cPYHSðrÞ, had the rather remarkable property that

cPYHSðq ¼ 0Þ ¼ 1þ cPYHSðr ¼ 0Þ: ð3Þ

Furthermore, from [7,8] it was already known that

cPYHSðr ¼ 0Þ ¼ �
ð1þ 2pfÞ

2

ð1� pfÞ
2
, ð4Þ

where pf is used to denote the packing fraction defined by

pf ¼ ð�=6Þn�
3, ð5Þ
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� being the HS diameter and n the atomic number density. For many simple liquids near
freezing it is well known that pf is approximately equal to 0.45, and inserting this into
Equation (4) yields:

cPYHSðr ¼ 0Þ � �40: ð6Þ

Hence, from Equations (3) and (6), Bernasconi and March [2] stressed that a necessary,
though not sufficient, condition for HS behaviour was that the ratio R given by:

R ¼
cðr ¼ 0Þ

cðq ¼ 0Þ
, ð7Þ

be approximately unity. In [2], c(r¼ 0) was calculated from experimental diffraction data
for S(q), using Equation (1), for 15 liquid metals near freezing. The quantity c(q¼ 0) in the
denominator of Equation (7) is more readily accessible, since it is given, via Equation (1),
by fluctuation theory using

Sðq ¼ 0Þ ¼ nkBTKT, ð8Þ

where KT is the isothermal compressibility. The findings of [2] are then collected in Table 1.
Of the 15 liquid metals in Table 1, the ratio R is far from unity in only three cases: the

polyvalent metals Ga, Sn and Pb. These are therefore unambiguously of non-HS-like
character. Six liquid metals, Na, K, Rb, Ag, Au and Fe have R values between 0.9 and 1.1,
and therefore satisfy well the necessary criterion for HS-like behaviour. More recently, in a
review by Krishnan and Price [12], their Figure 23, made possible from data obtained by
levitation and X-ray experiments, shows that a further four liquid metals satisfy a
(different) necessary condition for HS-like behaviour. These include three of the metals
already entered in Table 1 of the present article, namely Cu, Al and Ni, plus a fourth one,
Zr. In summary, from [2] and [12] we conclude that, with the clear exceptions of non-HS-
like behaviour in Ga, Sn and Pb, only two metals in Table 1, namely Cs and Co, are in
doubt as to the satisfaction of the necessary criterion R� 1 for HS-like behaviour.

Table 1. Direct correlation function data for pure liquid metals near
freezing.

Metal �c(r¼ 0) �c(q¼ 0)

cðr ¼ 0Þ

cðq ¼ 0Þ

Na 43 41 1.0
K 42 40 1.0
Rb 45 42 1.1
Cs 50 38 1.3
Cu 60 47 1.3
Ag 51 53 1.0
Au 35 38 0.9
Mg 31 39 0.8
Al 45 54 0.8
Ga 34 200 0.2
Pb 44 110 0.4
Sn 40 140 0.3
Fe 46 48 1.0
Ni 41 50 0.8
Co 35 50 0.7
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3. Binary liquid metallic alloys

Having discussed the possible classification of liquid metals into HS-like and non-HS in

the previous section, let us turn to the glass-forming binary metallic alloys considered by

Chathoth et al. [1]. Our first focus then is on NiNb. While in Section 2, Ni is concluded to

be a possible HS-like metal, we do not know of the existence of diffraction measurements

on pure liquid metal Nb to date. Therefore we turn to theoretical studies at this point,

prominent among which is the work of Hausleitner and Hafner [4]. These authors note

that there are only two crystalline phases in the Ni–Nb alloy: a tetrahedrally close-packed

phase (Fe7W8-type) in the range 42–48 atomic per cent Ni, and the Ni3Nb phase which

crystallises in the Cu3Ti structure, based on the stacking of close-packed layers. In the

tetrahedrally close-packed phase, the larger Nb atoms are 12-, 14-, 15- and 16-fold

coordinated in the form of icosahedra and Frank–Kasper polyhedra [13], the smaller Ni

atoms having an icosahedral surrounding. It is noteworthy that the nearly-free-electron

tight-binding-bond (NFE–TBB) approach to the interatomic forces used in [4] to model

metallic glasses shows, within the series of Ni–Y, Ni–Zr and Ni–Nb amorphous alloys, a

gradual change from a trigonal prismatic to a polytetrahedral topological short-range

order and a decreasing chemical short-range order. Also, increasing Ni content gives rise

to a transition from prismatic to tetrahedral coordination. The trend in the results for

Ni–Y, Ni–Zr and Ni–Nb supports then the importance of the packing fraction, as stressed

by Chathoth et al. [1] with reference to the Ni–Nb metallic glass.
Via Equation (2), we stress that the tail (i.e. the large r behaviour) of the direct

correlation function c(r) of a pure liquid metal provides important information on the

long-range form of the (assumed) pair potential �(r). We note next that Cowlam et al.

[14,15] have generalised this approach using diffraction data on disordered binary alloys.

By generalising Equation (2) to a binary liquid alloy, one has

�ijðrÞ ¼ �kBTcijðrÞ, ð9Þ

for r!1, where �ij(r) represents the three interionic pair potentials in the two-component

alloy, with cij (r) the partial direct correlation functions. These partial cijs, written now in

q-space as cij (q), are related to the partial structure factors Sij (q) by [16]:

c11ðqÞ ¼
ðS11ðqÞ � 1Þð1þ x2ðS22ðqÞ � 1ÞÞ � x2ðS22ðqÞ � 1Þ2

D
,

c12ðqÞ ¼
S12ðqÞ � 1

D
,

c22ðqÞ ¼
ðS22ðqÞ � 1Þð1þ x1ðS11ðqÞ � 1ÞÞ � x1ðS12ðqÞ � 1Þ2

D
: ð10Þ

The denominator D is given by:

D ¼ ð1þ x1ðS11ðqÞ � 1ÞÞð1þ x2ðS22ðqÞ � 1ÞÞ � x1x2ðS12ðqÞ � 1Þ2: ð11Þ

Cowlam et al. [15] have estimated �NiNi(r) for the binary glass Ni64B36 from neutron

diffraction measurements [14] of SNiNi(q), SNiB(q) and SBB(q) on isotopically enriched

samples, and their interatomic potential is re-drawn in Figure 1. There is a characteristic

metallic-like repulsive hump after the principal minimum, followed by a further, rather

shallow attractive region. This approach offers clear possibilities for future diffraction

studies in binary metallic glasses, even though Cowlam et al. [15] stress the preliminary
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nature of their �NiNi(r). It is of obvious interest for the future to test whether the first
attractive region especially of Figure 1 appreciably alters any properties of the HS
approximation to the Ni64B36 metallic glass.

To complete this section we mention briefly some other systems on which useful data
are available. Thus, for the transition metal–metalloid glass Pd80Si20, experimental partial
structure factors are available from the work of Fukunaga and Suzuki [17] (see also [18]).
Returning to the packing fractions pf, but now in liquid binary alloys, diffraction peak
heights in CoB, NiB, FeB and PdSi glasses correlate well with pf, in the order
pf (CoB)¼ 0.724 pf (NiB)¼ 0.714 pf (FeB)¼ 0.694pf (PdSi)¼ 0.68, where the packing
fraction is now taken to be defined by:

pf ðalloyÞ ¼ ð4=3Þ�hr
3in: ð12Þ

In this equation, the averaged value hr3i is calculated using the Goldschmidt radii of the
metal atoms and the tetrahedral covalent radii of the metalloids, and the number densities
n are obtained from Lamparter et al. [19]. Though the above values of the packing
fractions may well be correct in the form of inequalities, the above pf values are much
higher than the values for the alloys in the work by Chathoth and coworkers, and we
expect reductions in future work. We turn immediately below to display results for a few
selected examples of multicomponent glass-forming metallic liquids.

4. Multicomponent glass-forming metallic liquids

Since multicomponent systems in the present context now represent a huge area of both
basic and technological interest, we must inevitably be very selective in this section.
Returning to the basic motivation provided by the recent work of Chathoth et al. [1], let us
begin with the NiNbSn melts. While the discussion in Section 3 indicates that the binary
liquid alloy NiNb may subsequently prove to qualify as a possible HS-like material, Sn is
one of the pure liquid metals discussed in Section 2 that is certainly non-HS-like. Of
course, at low concentrations of Sn the situation may not be appreciably changed, but as
the Sn concentration is increased we can expect important interplay between packing
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Figure 1. Interatomic pair potential �NiNi(r) derived by Cowlam et al. from the measured partial
structure factors Sij (q) in a Ni64B36 glass. Re-drawn from [15].
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fraction effects from largely repulsive interactions and long-range tails having character-
istic metallic forms following the principal minimum in the pair potential. It may be that
future studies can clarify whether (1) repulsive interactions and long-range tails both
contribute to empirical packing fractions, or (2) packing fraction effects come from
repulsive, or at least short-range, interactions and long-range tails disturb those effects.
The alternative seems to be that (3) the two effects are independent.

As a second example of multicomponent melt we take the glass forming ZrTiNiCuBe
alloys, which have been investigated by incoherent, quasi-elastic neutron scattering [20]. In
particular, neutron data was obtained on Zr41.2Ti13.8Cu12.5Ni10Be22.5 and on
Zr46.8Ti8.2Cu7.5Ni10Be27.5 melts. These alloys not only exhibit a remarkable stability
against crystallisation in the supercooled liquid state [21], but have viscosities (see also
Section 5) at the liquidus temperature that are three or four orders of magnitude greater
than in simple metallic liquids. As already summarised in Section 2, pure liquid metals Zr,
Cu and Ni satisfy the necessary condition for HS-like behaviour. Presently we have no
information on Ti in this respect, but there is theoretical work on the interatomic forces in
metallic Be by Perrot and March [22]. This study used electron theory to construct a pair
potential �(r) in liquid Be near freezing, which is shown in Figure 2. As is quite clear in this
figure, there are important metallic-like tails following a rather hard core repulsive region.
Though the Be concentration only ranges from about 20 to 30% in the two alloys
investigated using neutrons [20], we may well be dealing here with two alloys which have
less dominant contributions from the packing fraction.

A further multicomponent glass-forming alloy of interest is Pd43Ni10Cu27P20, with now
a non-metallic component, P. However, we defer further discussion of this material to the
following section on transport. In a more general context we refer to the survey by Greer
[23] on metallic glasses, where the metallic glass W60Ir20B20 is cited [24]. Liquid B is now
known from the levitation and diffraction studies of Krishnan and Price [12] to be metallic,
and we can safely anticipate that it will show non-HS-like behaviour because of its
chemical bonding propensities (e.g. compare with liquid metal Si). With this somehow
arbitrary selection of multicomponent glass-forming metallic liquids, we turn from the
discussion of static structure and forces to deal with transport properties.

5. Mass and momentum transport in glass-forming metallic liquids

5.1. Diffusion via cooperative motion of numerous atoms

Let us begin the discussion of transport in glass-forming alloys by briefly setting out
phenomenology on diffusion for a multi-component liquid alloy. This can be traced back,
at very least, to the book by Glasstone et al. [25]. Combining this background with (a) the
idea of cooperative motions of numerous atoms involved in the theory of the glass
transition going back to Adam and Gibbs [5] and (b) the treatment of the isotope effect by
Vineyard [26], one is led by phenomenology to the form of an expression for the isotope
effect on diffusion going back to Mullen [27], namely:

E ¼ ðD�=D� � 1Þ ðm�=m�Þ
1=2
� 1

� �
: ð13Þ

In this equation, m� and m� denote the atomic masses of the tracers, and D�, D� are the
corresponding diffusivities. Such an approach has been employed by Faupel et al. [28] to
analyse their experimental data of Co diffusion in the multicomponent metallic glass
Co76.7Fe2Nb14.3B7. In this case the tracers are Co-57 and Co-60, and within their
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experimental accuracy, no pressure dependence of Co diffusion was found in this metallic
glass. The measured value of the isotope effect E was equal to 0.1. The factor (D�/D�� 1)

appearing in Equation (13) can then be written in the form [27]:

D�

D�
� 1 ¼

m� þ ðn� 1Þm

m� þ ðn� 1Þm

� �1=2
�1

" #
fDK, ð14Þ

where m is the average atomic mass of the matrix. In the picture of cooperative motions of
numerous atoms involved in glassy behaviour, n denotes the number of jumping atoms, f is

a correlation factor introduced initially by Bardeen and Herring [29] while DK accounts for
many-body effects [26]. Explicitly (see also [30]), DK is the fraction of kinetic energy

associated with motion parallel to the jump direction in the saddle-point configuration
which resides in the n jumping atoms. For self-diffusion via monovacancies, n¼ 1, and

then the correlation factor f solely depends on the lattice geometry, being 0.782 for the
face-centred cubic (fcc) structure [31]. Faupel and coworkers obtained from their data on

fcc Co that E¼ 0.74. In sharp contrast, for amorphous Co76.7Fe2Nb14.3B7 they obtained,
as indicated above, E¼ 0.10� 0.01. These authors point out that whether the weak isotope

effect is basically due to a large n in Equation (14) or to a small value of DK cannot be
concluded decisively from their measurements. However, they note that one obtains a

lower limit n� 10 for the participating number of atoms in the diffusion process by
assigning the entire effect to n.

3x10–3

2x10–3

1x10–3

0

–1x10–3

3 4 5
R (a.u.)

f 
(a

.u
.)

6

Figure 2. Calculated interatomic pair potential for liquid Be near freezing. Re-drawn from [22].
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Faupel and coworkers also stress that the absence of pressure dependence for
Co diffusivity in Co76.7Fe2Nb14.3B7 shows that diffusion is not via thermal quasi-
vacancies. They also note, due to similar effects which hold for diffusion of all elements
except H in the metallic glasses studied [32], that it is tempting to propose such cooperative
motion of atoms in amorphous alloys in general. However, the number of atoms involved
must then be anticipated to vary from one material to another. This prompts us to refer to
theories of cooperative motion begun by authors such as Zwanzig [33] and Nossal [34],
but, though fundamentally based, much future effort will be required from first-principles
to bring these theories into contact with explicit experimental results such as those of
Faupel and coworkers. With this major example on mass transport in a metallic glass, we
extend this section by turning next to results for shear viscosity.

5.2. Shear viscosity in glass-forming metallic liquids

Momentum transport in the context of shear viscosity can be equally revealing to the mass
transport problem discussed above in understanding glass-forming metallic liquids, at the
level of atomic processes, structure and forces. It is then not surprising that some emphasis
has been placed on the HS model. Notable work on the one-component case is that of
Longuet-Higgins and Pople [35] and Collins and Raffel [36]. These authors obtain the
shear viscosity for this model in the approximate form

� ¼
2�2

15

MkBT

�

� �1=2

gð�Þ, ð15Þ

where M is the mass of the HS having a diameter �, and g(�) is the value of the pair
correlation function. We note here that, by using computations by Speedy [37] and by
Erpenbeck and Wood [38] on diffusion in the HS model, Angilella et al. [39] have recently
proposed a refinement of the analytic form of Equation (15).

Turning to the two-component model, we next note that Faber [40] and Singh and
Sommer [41] have written a generalisation of Equation (15) in terms of the partial pair
correlation functions gij(r) for HS of diameters �A and �B in the AB alloy. This takes the
form:

� ¼
4

15
ð�kBT Þ

1=2�2
X
i

X
j

cicjðmjÞ
1=2 �i þ �j

2

� 	4
gijð
�i þ �j

2
Þ, ði, j ¼ A,BÞ, ð16Þ

where mj are the atomic masses and � is the average density. However, it is found [41] that
Equation (16) does not work for the systems Bi–Ga and Bi–Zn. In Section 2, Ga was
shown to be definitely non-HS-like. We should add here that for pure liquid Bi near
melting, the long-wavelength limit of the structure factor, S(q¼ 0), is known to be 0.0093,
and hence the argument of Bernasconi and March [2] clearly points to Bi also being non-
HS-like. Thus, it is quite possible that Equation (16) will prove useful in practice when
both elements in the binary liquid alloy satisfy the necessary conditions set out in Section 2
for HS-like behaviour.

Let us turn from the HS model to the phenomenological treatment of the
shear viscosity in glass-forming metallic liquids. Then it is noteworthy that in work
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done almost six decades ago, Doolittle [42] related � to the available free volume ���0

[43] by writing

� ¼ A exp
b�0

���0

� �
, ð17Þ

where �0 is the volume per atom. However, we prefer here to stress the more basic
phenomenology going back to the study of Adam and Gibbs [5]. Utilising explicitly
Equations (21) and (22) of their paper we are then led to write the shear viscosity � in the
form

� ¼ B exp
C

TSc

� �
, ð18Þ

where Sc is the configurational entropy of the glass-forming liquid. Goldstein [44] raised an
early objection to putting emphasis on the configurational entropy Sc as a basic variable
governing glass formation. However the presence of TSc in this equation appears to
overcome this criticism.

To conclude the discussion on transport we shall next introduce possible general-
isations of the SER, well known to be extremely valuable in relating diffusion and shear
viscosity in one-component dense liquids to multicomponent glass-forming metallic
liquids.

5.3. Generalisation of the SER for multicomponent glass-forming metallic liquids

Before turning to multicomponent systems, it is relevant to note that fairly recently there
has been interest in the SER in some pure liquid metals [45–47]. In its simplest
formulation, the SER states that the diffusion coefficient D of a particle of radius
R immersed in a fluid with viscosity � is given by D ¼ kBT=6��R. Generally speaking, in
these studies the validity of the SER, relating D and �, was accepted in semi-quantitative
terms and the focus was therefore to explain relatively modest departures from it.

As to the relevance of the SER to multicomponent glass-forming metallic liquids, we
shall focus first on the experimental studies of Meyer [48] and Meyer et al. [49].
Specifically, liquid Pd43Ni10Cu27P20 has been investigated by Meyer [48] using incoherent
inelastic neutron scattering. As Meyer stresses, this material is characterised by a dense
packing, corresponding to a packing fraction greater than 0.5. Also it is known that at the
above composition, a cooling rate as low as 0.09K s�1 is sufficient to prevent
crystallization and to form a bulk metallic glass [50]. Meyer concludes that diffusivities
derived from mean relaxation times compare favourably with Co diffusivities from tracer
diffusion measurements. And most importantly in the present context, diffusivities
calculated from viscosity via the SER also compare well. Unfortunately, Meyer et al. [20]
have subsequently investigated atomic transport in ZrTiCuNiBe melts, with quite a
different conclusion in relation to the SER. Both Zr41.2Ti13.8Cu12.5Ni10Be22.5 and
Zr46.8Ti8.2Cu7.5Ni10Be27.5 melts were investigated. Again by means of incoherent, quasi-
elastic neutron scattering, Meyer and coworkers could extract an average self-diffusion
coefficient of the incoherent scatterers Ni and Ti. The viscosity data of Masuhr et al. [51]
was used in the context of the SER. In contrast to the findings on liquid PdNiCuP alloys
summarised above, the mean Ni and Ti self-diffusivity (for PdNiCuP, Ni and Cu) could
not be usefully expressed in terms of the measured shear viscosity by means of the SER.
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Das et al. [52] have used both inelastic neutron scattering and molecular dynamics

(MD) to study the influence of chemical short-range order on atomic diffusion in Al–Ni

melts. The temperature and concentration dependence of the measured diffusion

coefficients are reproduced satisfactorily by their MD simulations. Again the conclusion

here is that transport is strongly influenced by packing effects, even though the interatomic

forces depend strongly on chemical short-range order. It would be of interest in the future

if measurements plus MD simulations of shear viscosity could be obtained, to assess

whether the SER is useful for this binary metallic alloy.
Having reviewed briefly experimental neutron scattering results on the binary metallic

liquid Al–Ni, we now want to lay down a route by which, in the long term, relations

between transport coefficients may emerge from first-principles theory. We take as starting

point the theoretical study of Bhatia et al. [53]. In their work they introduced the so-called

M–X dynamical structure factors, which are essentially the FT of the mass-density and

mass-concentration correlation functions. As will be demonstrated below, these M–X

structure factors are intimately related to transport in binary metallic liquids.
Let us consider, specifically, a binary metallic liquid within a volume V having

N�(�¼ 1, 2) atoms of type � which contribute a mass M� to the total mass M(¼M1þM2)

of all N(¼N1þN2) atoms in the alloy. If ��¼M�/V is the mean mass-density of the �
species, then we define the mean mass-concentration, x say, by:

x ¼M1=M ¼ �1=�, ð19Þ

where �¼M/V is the mean mass-density. Also it is helpful to define the mean number

concentration as c¼N1/N. We shall denote the local mass-density at time t and position r

for species � by ��(r, t), and then we write the local fluctuation 	 ��(r, t) in this quantity as:

	��ðr, tÞ ¼ ��ðr, tÞ � �� ¼ m�	n�ðr, tÞ: ð20Þ

Evidently 	n�(r, t) here is the fluctuation in the local number–density operator of species �.
Also in Equation (20), m� is the molar mass, per atom, of species �, m�¼M�/N�. We next

form the local fluctuations in the total mass-density and mass-concentration, respectively,

as:

	�ðr, tÞ ¼ 	�1ðr, tÞ þ 	�2ðr, tÞ ð21Þ

and

	xðr, tÞ ¼ ��1 ð1� xÞ	�1ðr, tÞ � x	�2ðr, tÞ½ �: ð22Þ

Writing the following Fourier expansions:

	�ðr, tÞ ¼ V�1
X
q

Mðq, tÞe�iqr
ð23Þ

and

	xðr, tÞ ¼
X
q

Xðq, tÞe�iqr,
ð24Þ

we find

Mðq, tÞ ¼Mþð�q, tÞ ¼

Z
eiqr	�ðr, tÞdr ð25Þ
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and

Xðq, tÞ ¼ Xþð�q, tÞ ¼ V�1
Z

eiqr	xðr, tÞdr: ð26Þ

This then leads to the desired M–X dynamical structure factors as:

SMMðq,!Þ ¼
1

2�M

Z
e�i!thMþðq, 0ÞMðq, tÞidt, ð27Þ

SMXðq,!Þ ¼
1

4�

Z
e�i!thMþðq, 0ÞXðq, tÞXþðq, 0ÞMðq, tÞidt, ð28Þ

SXXðq,!Þ ¼
M

2�

Z
e�i!thXþðq, 0ÞXðq, tÞidt, ð29Þ

where h � � � i denotes the ensemble average. These are the appropriate dynamical structure
factors from which to forge intimate links with the transport coefficients in a binary
metallic liquid. One can proceed to form Kubo–Green-like formulae, and indeed the first
one involving SMM(q, 0) parallels completely the one-component case by yielding the
combination of shear viscosity � and its bulk viscosity [3] counterpart 
 as

lim
!!0

!4 lim
q!0

1

q4
SMMðq,!Þ ¼

kBT

��

4

3
�þ 


� �
: ð30Þ

SXX (q,!), on the other hand, involves the coefficient of mutual diffusion, D12 say, through

lim
!!0

!2 lim
q!0

1

q2
SXXðq,!Þ ¼

MkBT

�

D12

ZX
, ð31Þ

where ZX is a thermodynamic quantity derivable from the Gibbs free energy of the binary
liquid as

ZX ¼
@2G

@x2

� �
P,T,M

: ð32Þ

The cross relation involving SMX (q,!) is more complex, involving D12 again, but we shall
not take it further here. Through Equations (30) and (31) it would seem to be a clear
objective for future study, to forge a link, albeit approximate, between the viscosity
combination (4�/3þ
) and the coefficient of mutual diffusion D12, the thermodynamic
quantity ZX being also involved.

6. Discussion and proposed future directions

Motivated by the study of Chathoth et al. [1], we have focused here on the issue of when
possible HS-like behaviour will be in evidence in multi-component glass-forming metallic
liquids. It seemed natural to begin the discussion with pure liquid metals. Table 1, obtained
from thermodynamic data plus diffraction measurements on 15 liquid metals near freezing
[2], showed in the final column a ratio which must be near to unity as a necessary condition
for HS behaviour. Combined with subsequent data by Krishnan and Price [12] from
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levitation plus diffraction studies, one has 10 of the 15 pure liquid metals in Table 1 as

satisfying the necessary condition to be HS. The three polyvalent metals Ga, Pb and Sn

are, however, thereby excluded. Less decisively, the two remaining candidates in Table 1,

namely Cs and Co, should presently, we believe, be excluded from the HS category. From

[12] Zr is possibly in the HS category, whereas it has been argued from experimental

thermodynamic data that Bi is definitely non-HS. Finally, Be from the electron theory

study of Perrot and March [22] is also to be viewed as non-HS.
Returning to the study of Chathoth et al. [1], the binary liquid metallic alloy NiNb

qualifies as possibly HS-like. In the NiNbSn melts, Sn is in the non-HS category. As

mentioned above, at low concentrations of Sn this is unlikely to alter the dominance of the

packing fraction; substantial increase in the Sn concentration, if that proves possible

experimentally, may lead to important interplay between packing fraction effects and

characteristic metallic tails, in which a repulsive region follows the principal minimum in

an (assumed) pair potential description. Similar comments apply to the ZrTiNiCuBe

alloys. The concentration of Be, between 20 and 30% in these alloys, means that interplay

between HS behaviour and metallic-like tails may be important here. The final example is

the metallic glass W60Ir20B20 cited by Greer [23]. Liquid B is known from [12] to be

metallic, and non-HS behaviour can safely be anticipated for the above alloy, because of

the chemical bonding propensities of B.
Turning to transport properties, but now more briefly because they will be an

important element in proposals to be made below, the HS Equation (16) is found not to

work for the shear viscosities in the binary metallic liquid systems Bi–Ga and Bi–Zn, both

Bi and Ga having been identified in the present study as non-HS. As the final point before

turning to proposals for the future, general consensus is now emerging that in

multicomponent glass-forming metallic liquids the glass transition must be characterised

by cooperative motion of numerous atoms. This is reflected, for example, in the early and

basic phenomenology of Adam and Gibbs [5], which leads to a relation of the form of

Equation (18) between shear viscosity and TSc, where Sc is the configurational entropy.
As to further directions for research in the area of the present study, which has, of

course, importance both for basic science and for technological applications, there is an

important balance to preserve. As to the former, we think that the basic theory of theM–X

dynamical structure factors, set out in Section 5.3 in relation to neutron scattering and

momentum and mass transport coefficients, is a pointer towards relating mutual diffusion

(see Equation (31)) and a combination of shear plus bulk viscosity (see, for instance,

Equation (30)) in binary glass-forming metallic liquids. We stress this because more

straightforward attempts to construct generalisations of the one-component SER have

only had modest success to date, with numerous counterexamples known. The work of

Faupel et al. [28] points to an important experimental route relating to the above

proposals.
Returning to theoretical models, we have not referred before in the present article to

mode-coupling theory. There are at least two reasons for this. The first is because this area

has been covered in its entirety in a recent book by Gotze [54]. Second, as stressed by

Zacarelli et al. [55] in the framework of colloids, the precise delineation of the regime of

applicability of mode-coupling theory concepts remains to be clarified.
In gaining further structural insight, we believe that reverse Monte Carlo studies [56]

are noteworthy contributions to this general area of glass-forming multicomponent

metallic liquids [57], and point to another important direction for future studies.
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